Pokrocilé systemy pocitacoveho vidéni a
robotiky v preciznim zelinarstvi:
Technologicka analyza, evoluce a
budouci smery

1. Uvod: Strukturalni transformace zemédélstvi a
imperativ automatizace

Soucasny globalni zemédélsky sektor se nachazi v kritickém bodé zlomu, ktery je definovan
konvergenci demografickych tlak(, environmentalnich limit( a technologickych moznosti.
Projekce Organizace spojenych narod(i naznacuji, Ze do roku 2050 svétova populace prekroci
hranici 10 miliard lidi, coz vyvola potrebu zvysit globalni produkci potravin o 50 % oproti
soucasnému stavu.' Tento imperativ narazi na fyzické limity planety a zejména na akutni
nedostatek lidskeého kapitalu v primarnim sektoru. V rozvinutych ekonomikach, jako jsou
Spojené staty americké, pracuje v zemédélstvi méné nez 2 % populace a predikce rlistu
zaméstnanosti v tomto odvétvi stagnuji na Grovni 1 % pro dekadu 2019-2029." Tato
diskrepance mezi rostouci poptavkou po potravinach a klesajici dostupnosti pracovni sily
vytvari bezprecedentni tlak na automatizaci proces.

Tradic¢ni model extenzivniho zemédélstvi, zaloZzeny na uniformnim o$etrfovani velkych ploch,
narazi na limity udrzitelnosti a efektivity. Odpovédi na tyto vyzvy je koncept Zemédélstvi 4.0
(Smart Agriculture), ktery predstavuje paradigmaticky posun od mechanizace k digitalizaci a
automatizaci. Jadrem této revoluce neni pouhé nahrazeni svalove sily stroji, ale nahrazeni
lidského smyslového vnimani a kognitivniho rozhodovani umélou inteligenci (Al). Klicovou
technologii, ktera tento prechod umoznuje, je pocitacové vidéni (Computer Vision - CV).
Zemeédélci, ktefi po staleti vyuzivali své smysly k hodnoceni stavu plodin, nyni musi rozsifit sve
schopnosti pomoci senzord, které jim umozni "vidét" za hranice lidského oka a spravovat pole
s miliony rostlin na urovni individualni péce.’

Tato vyzkumna zprava se specificky zaméruje na aplikaci pokrocilych systému pocitacového
vidéni v oblasti péstovani zeleniny (specialty crops). Na rozdil od polnich plodin, jako je
pSenice nebo kukurice, je prostredi zelinarstvi charakteristicke vysokou mirou
nestrukturovanosti, biologicke variability a nutnosti jemné manipulace s kiehkymi produkty.
Zprava syntetizuje poznatky z vice nez 130 technickych zdrojl a analyzuje technologicky vyvoj
od tradi¢nich metod zpracovani obrazu az po nejnovéjsi architektury hlubokého uceni, jako
jsou Vision Transformers a zakladni modely (Foundation Models), v kontextu let 2024 a 2025.



1.1 Ekonomické a socio-technické determinanty robotizace

Nasazeni robotickych systém( v zelinarstvi neni motivovano pouze technologickym pokrokem,
ale predevsim tvrdymi ekonomickymi daty. Analyzy nakladd a prinost (Cost-Benefit Analysis)
robotickych systémd, jako jsou autonomni plecky nebo sklizeci roboty, ukazuiji, ze navzdory
vysokym pocatecnim kapitalovym vydajim (CAPEX) dochazi k vyraznému snizeni provoznich
nakladd (OPEX). Studie z francouzskych vinic a danskych repnych poli prokazaly, ze
autonomni systémy mohou snizit spotrebu herbicidl az o 90 % diky preciznimu bodovému
postfiku (spot spraying) nebo jejich Uplné nahradé mechanickou &i laserovou likvidaci.? V
kontextu péstovani zeleniny, kde manualni pleni a sklizen predstavuji nejvétsi nakladovou
polozku, nabizi technologie jako Stout Smart Cultivator snizeni mzdovych nakladl na pleni
az 096 %.*

Ekonomicka proveditelnost je vsak silné zavisla na intenzité vyuzivani strojl. Zatimco u vysoce
hodnotnych plodin (high-value crops) je navratnost investice (ROI) atraktivni, u komoditnich
plodin s niz&i marzi je adopce pomalejsi. Klicovym faktorem je zde také spolehlivost a rychlost
detekce. Systémy, které nedosahuji alespon 95% presnosti detekce plevell v readlném cCase,
nejsou komercné Zivotaschopné, protoze riziko poskozeni plodiny prevysuje uspory na
pracovni sile.’

2. Teoreticky ramec a evoluce algoritmu pocitacového
vidéni
Historie aplikace pocCitaCoveho vidéni v zemédélstvi je pribéhem postupneho prechodu od

rigidnich, pravidly svazanych systém k flexibilnim, daty fizenym modelim umélé inteligence.
Tento vyvoj Ize rozdélit do tfi distinktivnich fazi, které se v soucasné praxi Casto prolinaji.

2.1 Era tradiéniho zpracovani obrazu a extrakce priznakii

V pocatcich automatizace zemédélstvi se spoléhalo na techniky klasického zpracovani obrazu
(Digital Image Processing - DIP). Tyto metody byly zaloZzeny na predpokladu, Ze cilové objekty
(plodiny) Ize odlisit od pozadi (plda, plevel) pomoci explicitné definovanych pravidel.

e Segmentace na zakladé barvy: Nejrozsirenéjsi metodou bylo vyuziti barevnych indexd,
jako je ExG (Excess Green), ktery zvyraznuje zelenou slozku obrazu a potlacuje ¢ervenou
a modrou. Prahovanim tohoto indexu bylo mozné oddélit vegetaci od pldy. Dalsi pristupy
vyuzivaly transformace do barevnych prostort jako HSV nebo OHTA, které jsou méné
citlivé na zmény intenzity osvétleni nez standardni RGB prostor.°

e Morfologické operace: Pro analyzu tvaru listl nebo plodl se vyuzivaly operace eroze a
dilatace, detekce hran (Canny, Sobel) a Houghova transformace pro detekci kruhovych
tvarll (napr. rajcata, citrusy).

e Limity tradicnich metod: Ackoli byly tyto algoritmy vypocetné nenarocné a snadno
implementovatelne na starSim hardwaru, selhavaly v realnych polnich podminkach. Jejich



hlavni slabinou byla neschopnost generalizace. Zména svételnych podminek (zatazeno
vs. slunec¢no), vrhani stini nebo prekryv listl vedly k dramatickému poklesu presnosti.

Kvantitativni srovnani ukazuji, Ze v komplexnich scénafrich (napr. plevel v fadku plodiny)
dosahovaly tradi¢ni metody presnosti (accuracy) stézi 70-80 %, coz je pro autonomni
systémy nedostate¢né.’

2.2 Revoluce Hlubokého uceni (Deep Learning) a architektury CNN

Nastup hlubokych konvolu¢nich neuronovych siti (CNN) po roce 2012 znamenal pro
zemédeélskou robotiku kopernikovsky obrat. Namisto ru¢niho definovani toho, jak vypada list
("je zeleny a ma ovalny tvar"), se neuronova sit uci tyto charakteristiky sama z velkého
mnozstvi anotovanych dat.

2.2.1 Detekce objektd: Dominance rodiny YOLO

V oblasti detekce v realném Case (Real-Time Object Detection) se de facto standardem staly
algoritmy rodiny YOLO (You Only Look Once). Na rozdil od dvoufazovych detektor(
(two-stage detectors) jako Faster R-CNN, které nejprve generuji navrhy regiond a poté je
klasifikuji, YOLO zpracovava obraz v jediném prlichodu siti. To prfinasi zasadni vyhodu v
rychlosti inference, ktera je kriticka pro roboty pohybuijici se po poli.

Vyvoj v letech 2024-2025 prinesl verze YOLOvV8 a YOLOV10, ktereé integruji pokrocile
mechanismy pro zlepseni presnosti na malych objektech (typicky problém pri detekci plevell v
rané fazi rdstu):

e Architektura: YOLOvV8 vyuziva C2f moduly v paterni siti (backbone), které zlepsuji tok
gradientl a extrakci priznakU. Dalezitym posunem je prechod na "anchor-free" detekci,
coz eliminuje nutnost ruéniho ladéni kotevnich boxd (anchor boxes) pro rizné typy
plodin.”

e Vykonnost: Experimentalni validace na datasetu chorob zeleniny (15 000 snimku)
ukazala, Ze model YOLOv8 dosahuje stredni primérné presnosti (mAP@0.5) na Urovni
95,6 %, coz predstavuje zlepsSeni o 6,4 procentniho bodu oproti predchozim baseline
modellm. Inferencni ¢as se pohybuje kolem 18,6 ms na snimek, coZ umoznuje zpracovani
videa rychlosti pfes 50 FPS.? Srovnavaci studie potvrzuji, ze Fada YOLO prekonava Faster
R-CNN v rychlosti, aniz by dochazelo k vyznamne ztraté presnosti, coz ji Cini idealni pro
nasazeni na edge zafizenich."

2.2.2 Instanc¢ni segmentace (Instance Segmentation)

Pro ulohy vyzaduijici presnou lokalizaci a manipulaci (napf. uchopeni plodu) nestaci objekt
pouze oramovat (bounding box). Je nutné klasifikovat kazdy pixel obrazu. Architektury jako
Mask R-CNN a noveéji YOLOv8-seg umoziuji presnou segmentaci instanci, coz je klicove pro
oddéleni prekryvajicich se plod( a identifikaci stopky (peduncle) pro bezpeény fez.™



2.3 Nastup Vision Transformers (ViT) a Zakladnich modell

Zatimco CNN dominovaly posledni dekade, roky 2024 a 2025 jsou ve znameni nastupu
architektur zalozenych na Transformerech (plvodné vyvinutych pro zpracovani jazyka) a tzv.
Foundation Models.

2.3.1 Vision Transformers (ViT) v zemédélstvi

CNN maji ze své podstaty omezené receptivni pole (receptive field), coz znamen3, Ze se
soustredi primarné na lokalni textury a tvary. Vision Transformers naproti tomu rozdéluji obraz
na sekvenci "patchi" a vyuZivaji mechanismus Self-Attention k modelovani globalnich vztah
mezi nimi.

e Aplikace: Tato schopnost "vidét celek” je neocenitelna pri detekci chorob, kde priznaky
mohou byt rozprostreny po celé rostliné v subtilnich vzorech. Studie ukazuji, ze modely
kombinujici ViT s mechanismem "Mixture of Experts" (MoE) dosahuji 0 20 % vyssi
presnosti nez standardni ViT a prokazuji vyrazné lepsi generalizaci pfi prenosu mezi
doménami (napt. trénink na laboratornich datech a testovani na poli).”

e Srovnani: Na klasifikacnich ulohach multispektralnich snimkd dosahuji ViT modely
presnosti pres 93 %, Cimz prekonavaji tradicni CNN architektury jako ResNet nebo
EfficientNet.”

2.3.2 Segment Anything Model (SAM) a Generativni Al

Revolu¢nim krokem je adaptace modelu SAM (Segment Anything Model) od spolecnosti
Meta. SAM je tzv. "promptable segmentation system", ktery dokaze segmentovat jakykoli
objekt na zakladé bodu nebo textoveho promptu, aniz by na néj byl explicitné trénovan
(zero-shot learning).

e Adaptace: Pro specifické zemédélské ulohy, jako je segmentace hustého porostu, vSak
zakladni SAM cCasto selhava. Vyzkum se proto soustredi na vyvoj adaptér(i (napr.
SAM-Agri nebo SAMConvFormer), které integruji doménoveé specifické znalosti do
architektury SAM.™

e Vysledky: Vyuziti SAM jako prvniho kroku v detekcnich pipelines zvySuje presnost
nasledné klasifikace chorob o pfiblizné 10 %." Generativni modely (GenAl) a multimodalni
LLM (Large Language Models) oteviraji cestu k systémlm, které umozni farmardm
komunikovat s roboty pfirozenym jazykem a ziskavat komplexni analytické zpravy."

2.4 Kvantitativni srovnani pristupu

Nasledujici tabulka shrnuje kliCove rozdily mezi diskutovanymi pfistupy v kontextu zemédélske
robotiky:

Parametr Tradicni CV Hlubokeé Vision Foundation
(DIP) uceni Transformers Models (SAM)




(CNN/YOLO) (ViT)
Mechanismus | Rucni definice Uceni z dat Uceni z dat Zero-shot /
uceni pravidel (lokalni (globalni Few-shot
priznaky) kontext)
Zavislost na Minimalni Vysoka (tisice Extrémni Predtrénovano
datech snimku) (miliony (obfi korpus)
snimku)
Odolnost vuéi | Nizka (selhava Vysoka (pfi Velmi vysoka Velmi vysoka
zménam pfi zméné dobré (robustni)
svétla) augmentaci)
Vypocetni Zanedbatelné Stredni (GPU Vysoké Extrémni
naroky (CPU) Edge) (Server/High-e | (vyzaduje
nd Edge) optimalizaci)
Inferen¢nicas | <5ms 10-30 ms 50-200 ms 500+ ms (bez
(YOLOVS8) destilace)
Typicka Kontrolovane Detekce Klasifikace Interaktivni
aplikace osvétleni, pleveld, chorob, segmentace,
tridéni navigace fenotypovani anotace

3. Senzoricka infrastruktura a multimodalni fuze dat

Schopnost autonomniho systému vnimat prostredi je determinovana kvalitou a diversitou jeho
senzorl. Moderni zemédélska robotika opousti paradigma "jedné kamery" a sméfuje k
multimodalni fuzi dat, ktera kombinuje prostorové, spektralni a vizualni informace.

3.1 RGB a RGB-D: Zakladni stavebni kameny

Standardni barevné (RGB) kamery jsou sice levné a dostupné, ale pro robotickou manipulaci
postradaiji kritickou dimenzi — hloubku. Bez informace o vzdalenosti nemuze robotické rameno
bezpecné uchopit plod. Proto se standardem stavaji RGB-D systémy, které poskytuji barevny

obraz (RGB) zarovnany s hloubkovou mapou (Depth - D).

e Stereo Vision: Vyuziva dvé kamery k vypoctu hloubky na zakladé disparity (posunu)
obrazu, podobné jako lidské oci. Je to pasivni metoda, ktera funguje dobre na slunci, ale
selhava na povrsich bez textury (napt. bilé stény skleniku).”’




e Time-of-Flight (ToF) a Structured Light: Aktivni metody (napf. senzory v Microsoft
Azure Kinect nebo Intel RealSense), které vysilaji infracervené svétlo a méri dobu letu
paprsku nebo deformaci promitaného vzoru. Poskytuji vysokou presnost na kratkou
vzdalenost, coz je idealni pro navadéni koncovych efektorl (eye-in-hand).?

3.2 LiDAR: Pater autonomni navigace

Pro navigaci mobilnich platforem v fadcich plodin je LiDAR (Light Detection and Ranging)
nenahraditelny. Na rozdil od kamer neni zavisly na okolnim osvétleni (funguje v noci i na
primém protisvétle) a poskytuje presnou 3D reprezentaci geometrie okoli.

e Aplikace v praxi: Spolecnost Naio Technologies, predni vyrobce zemédélskych robot(
(modely Oz, Orio, Ted), integruje 3D LiDARy pro detekci konce radku, vyhybani se
prekazkam a bezpecénostni certifikaci. LIDAR umoznuje robotlim vytvaret mapu prostredi
a lokalizovat se v ni s centimetrovou presnosti, coz je nezbytne pro mechanicke
pleckovani, kde odchylka o par centimetrti mdze znidit plodinu.?

3.3 Hyperspektralni a multispektralni zobrazovani (HSI/MSI)

Zatimco RGB a LiDAR vidi to, co vidi ¢lovék (tvar a barvu), hyperspektralni zobrazovani
odhaluje chemické a fyziologické procesy uvnitf rostliny. HSI senzory snimaji odraZené svétlo
ve stovkach uzkych spektralnich pasem, pokryvajicich viditelné (VIS), blizké infracervené (NIR)
a kratkovinné infracervené (SWIR) spektrum.

e Princip: Kazda choroba, skiidce nebo fyziologicky stres (sucho) méni bunécnou
strukturu a obsah vody v listech, coZ se projevi zménou odrazivosti v specifickych
vinovych délkach (spektralni signatura). Napriklad plisert bramborova (Phytophthora
infestans) je detekovatelna v pasmech 556 nm a 709 nm dfive, nez jsou viditelné
symptomy.?®

e Vyuziti: HSI se vyuziva pro nedestruktivni hodnoceni kvality (cukernatost, vnitini hniloba)
a vCasnou detekci chorob. Vyzvou zlstava obrovsky objem dat (hyperspektralni kostky) a
nutnost redukce dimenzionality (napr. pomoci PCA nebo 3D-CNN) pro zpracovani v
redlném Gase.”

3.4 Senzorova fuze

Kombinace téchto modalit je klicem k robustnosti. Algoritmy fuze dat (napf. Kalmanovy filtry
nebo moderni neuronové sité pro fuzi) integruji data z LiDARu (geometrie), RGB kamery
(textura) a HSI (chemie). Prikladem je systém Stout Smart Cultivator, ktery vyuziva fuzi
vizualnich dat a vlastni Al model k rozliSeni plodiny od plevele a fizeni mechanickych éepeli.*

4. Vypocetni hardware a Edge Computing

Zpracovani dat z vySe uvedenych senzord generuje obrovské datové toky (v radu gigabitl za
sekundu). Vzhledem k tomu, Zze zemédeélské oblasti Casto postradaji spolehlive



vysokorychlostni pripojeni (5G), musi zpracovani probihat pfimo na robotu — na hrané sité
(Edge Computing).

4.1 Dominance platformy NVIDIA Jetson

V letech 2024-2025 se platforma NVIDIA Jetson stala de facto standardem pro vestavénou
Al v robotice.

e Jetson AGX Orin: Tento modul predstavuje vrchol souc¢asné nabidky pro mobilni
robotiku. S vykonem az 275 TOPS (trilions of operations per second) a architekturou GPU
Ampere (2048 jader) pfinasi vykon serverové tridy do kompaktniho, energeticky
efektivniho baleni (spotfeba 15-60 W).

e Vyznam pro zelinarstvi: Tento vykon je kriticky pro béh modernich modelu jako Vision
Transformers nebo YOLOVS8 v realném Case. AGX Orin poskytuje az 8x vyssi vykon nez
predchozi generace (Xavier), coz umoznuje robotlim zpracovavat simultanné vice video
stream( (napr. z 6 kamer pro 360° rozhled) a provadét komplexni Ukony jako SLAM,
detekci a planovani pohybu souéasné.?’

4.2 Alternativni architektury
Kromé GPU se v specifickych aplikacich uplatiuji i jiné akceleratory:

e FPGA (Field-Programmable Gate Arrays): Napfriklad Xilinx Kria. Nabizeji extrémné
nizkou latenci a deterministické zpracovani, coz je vhodné pro fizeni motor( a

e TPU (Tensor Processing Units): Google Coral Edge TPU. Poskytuji vysokou efektivitu na
watt pro inferenci modell TensorFlow Lite, vhodné pro leh¢i dlohy (napf. detekce
pfitomnosti plodu) s minimalni spotiebou energie.”

5. Aplikace I: Roboticka sklizen a manipulace

Roboticka sklizen (Robotic Harvesting) je technologicky nejnaro¢néjsi disciplinou v preciznim
zelinarstvi. Vyzaduje bezchybnou koordinaci mezi vidénim, planovanim pohybu a fyzickou
interakci.

5.1 Vyzva detekce stopky (Peduncle Detection)

Pro vétSinu plodové zeleniny (rajcata, papriky, lilky, okurky) nestaci detekovat pouze plod.
Robot musi identifikovat stopku (peduncle) a presné lokalizovat bod rfezu (cutting point).
Pokud by robot zatahl za plod, mohl by vytrhnout celou rostlinu nebo poskodit plod v misté
uponu, coz vede k hnilobé.

e Reseni: Moderni algoritmy vyuZivaji pokrogilou instanéni segmentaci (YOLOV8-seg, Mask
R-CNN) k oddéleni plodu, stopky a hlavniho stonku. Vyzkum se zaméfuje na reseni
variability orientace stopky a jeji vizualni podobnosti se stonkem. Uspésnost lokalizace
bodu rfezu se pohybuje kolem 75-85 %, coz je stale oblast vyzadujici zlepseni pro plné



autonomni provoz.*

5.2 Vizualni servorizeni (Visual Servoing) a Aktivni percepce

Navedeni koncového efektoru k cili probiha v uzaviené smycce zvané vizualni servorizeni.

Eye-in-Hand: Kamera je umisténa pfimo na robotickém rameni. Jak se rameno priblizuje
k plodu, zvysuje se rozliSeni a presnost zaméreni.

Aktivni percepce (Active Perception): V hustém porostu jsou plody ¢asto skryty
(okluze). Robotické systémy nové generace nejsou pasivnimi pozorovateli. Pokud systém
detekuje ¢astecnou okluzi, naplanuje pohyb kamery do nového Uhlu (Viewpoint Planning)
nebo dokonce vyuZije rameno k jemnému odsunuti list(. Experimentalni robot pro sklizen
jahod z Washington State University vyuziva kombinaci silikonovych prstl a proudu
vzduchu k odhaleni skrytych plodd, &imz zvySuje Uspédnost detekce na 93 %.%

5.3 Mékka robotika a fuze taktilnich dat

Zelenina je mékka a snadno se poskodi. Tradi¢ni rigidni chapadla jsou nahrazovana mékkou
robotikou (Soft Robotics).

Soft Grippers: Vyuzivaji poddajné materialy (silikon) a pneumaticky nebo hydraulicky
pohon k jemnému obejmuti plodu. Tvarové se pfizpUsobi variabilité zeleniny.*
Vizualné-taktilni fize: Samotny zrak nestaci k urceni, jak pevné plod drzet. Moderni
senzory, jako je FingerVision, kombinuji kameru uvnitf prihledné silikonové kiize
chapadla. To umoznuje robotu "vidét" texturu a deformaci povrchu plodu pfi dotyku
(taktilni zpétna vazba) a upravit silu stisku v redlném cCase, aby nedoslo k pohmozdéni.
Fuze vizualnich a taktilnich dat také pomaha pfi odhadu zralosti (tvrdosti) plodu.*’

6. Aplikace ll: Precizni ochrana a fenotypovani

6.1 Revoluce v likvidaci plevelli (Weeding)

Zatimco sklizen je stale ve fazi rané komercializace, automatizované pleni je jiz plné komercné
dostupné a transformuje ekonomiku farem.

Laserové pleni (Laser Weeding): Prikopnikem je spolecnost Carbon Robotics se
strojem LaserWeeder. Tento systém vyuziva 42 kamer s vysokym rozliSenim a palubni
superpocitac k identifikaci plevell v redlném case. Nasledné CO2 lasery s
sub-milimetrovou presnosti zacili na meristém (ristovy vrchol) plevele a tepelné ho znici.
Systém eliminuje az 5 000 plevell za minutu s 99% presnosti, bez pouziti chemie a bez
narudeni pady.*’

Mechanicka kultivace: Spolecnost Stout Industrial Technology vyvinula Smart
Cultivator, ktery vyuziva Al k fizeni mechanickych Cepeli. Systém "True Vision" rozliSuje
plodinu od plevele a aktivné navadi Eepele kolem rostlin. Jeden stroj nahradi praci 25 lidi.*



6.2 3D Rekonstrukce a Fenotypovani
Pro Slechténi a detailni monitoring rlistu se vyuzivaji pokrocilé metody 3D rekonstrukce.

e NeRF vs. 3D Gaussian Splatting: Tradi¢ni fotogrammetrie je nahrazovana neuronovymi
sitémi. NeRF (Neural Radiance Fields) umoznuje vysoce detailni rekonstrukci rostlin, ale
je vypocetné naro¢na. Novéjsi technologie 3D Gaussian Splatting (3DGS) (2024) prinasi
revoluci v rychlosti — umoznuje renderovani fotorealistickych 3D modeld rostlin v redlném
Case. To otevira cestu k automatizovanému méreni objemu biomasy, pocitani plodl a
analyze architektury rostlin s nebyvalou pfesnosti.*®

7. Datova vyzva: Nedostatek dat a simulace

Klicovou bariérou pro vyvoj robustnich Al modeld je nedostatek kvalitnich anotovanych dat
(Data Scarcity). Ziskat miliony snimk( specifické choroby nebo plevele v riznych fazich ristu a
svételnych podminkach je v readlném svété témér nemozné.

7.1 Verejné datasety a jejich limity

Existuji snahy o vytvoreni verejnych benchmark, jako je Vegetable Image Dataset z
Bangladése (4319 snimk, 22 tfid zeleniny) nebo datasety z PlantVillage.*’ Tyto databaze jsou
vSak Casto omezené rozsahem, variabilitou pozadi nebo kvalitou anotaci. Nevyvazenost tfid
(mnoho zdravych list, malo nemocnych) vede k biasu modelt.”’

7.2 Synteticka data a Sim-to-Real Transfer

Redenim je generovani syntetickych dat. Platformy jako NVIDIA Isaac Sim vyuZivaji
technologii Replicator k proceduralnimu generovani fotorealistickych trénovacich dat.
Vyvojari mohou ve virtualnim prostredi simulovat nekone¢né mnozstvi variaci — ménit polohu
slunce, texturu pady, hustotu plevell ¢i stupen okluze.

e Domain Randomization: Klicovou technikou je doménova randomizace, ktera "zmate"
model nerealistickymi variacemi v simulaci (napr. fialové nebe), coz paradoxné nuti
neuronovou sit soustredit se na podstatné tvaroveé rysy objektu. To usnadnuje prenos
nauceného modelu ze simulace do reality (Sim-to-Real), kde se robot setka s
podminkami, které nikdy pfedtim nevidél.>?

8. Zaver a strategicky vyhled

Technologicky vyvoj v oblasti pocitacoveho vidéni pro zemédélskou robotiku dosahl v poloviné
dekady bodu zlomu. Pfechod od heuristickych algoritmt k robustnim hlubokym neuronovym
sitim a Foundation Models, podporeny vykonnym edge hardwarem, umoznuije vznik strojq,
které jiz nejsou jen akademickymi kuriozitami, ale ekonomicky nutnymi nastroji pro preziti
farem.



Klicové trendy pro budoucnost (2025-2030):

1.

Multimodalita: Roboti budou bézné kombinovat vidéni, hmat a spektralni analyzu v
jednom rozhodovacim procesu.

Swarm Robotics: Posun od velkych strojl k flotilam mensich, kooperujicich robotd, ktefi
si sdileji poznatky o prostredi.

Human-Robot Interaction: Diky generativni Al a vizualné-jazykovym modeldm budou
farmari moci ukolovat roboty prirozenou reci a dostavat od nich srozumitelné reporty.

Zemeédélska robotika tak prestava byt pouhou nahradou lidské prace a stava se nastrojem
precizni péce, ktery umoznuje produkovat vice potravin s mensimi vstupy a dopadem na
Zivotni prostredi.
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