
Pokročilé systémy počítačového vidění a 
robotiky v precizním zelinářství: 
Technologická analýza, evoluce a 
budoucí směry 
1. Úvod: Strukturální transformace zemědělství a 
imperativ automatizace 
Současný globální zemědělský sektor se nachází v kritickém bodě zlomu, který je definován 
konvergencí demografických tlaků, environmentálních limitů a technologických možností. 
Projekce Organizace spojených národů naznačují, že do roku 2050 světová populace překročí 
hranici 10 miliard lidí, což vyvolá potřebu zvýšit globální produkci potravin o 50 % oproti 
současnému stavu.1 Tento imperativ naráží na fyzické limity planety a zejména na akutní 
nedostatek lidského kapitálu v primárním sektoru. V rozvinutých ekonomikách, jako jsou 
Spojené státy americké, pracuje v zemědělství méně než 2 % populace a predikce růstu 
zaměstnanosti v tomto odvětví stagnují na úrovni 1 % pro dekádu 2019–2029.1 Tato 
diskrepance mezi rostoucí poptávkou po potravinách a klesající dostupností pracovní síly 
vytváří bezprecedentní tlak na automatizaci procesů. 

Tradiční model extenzivního zemědělství, založený na uniformním ošetřování velkých ploch, 
naráží na limity udržitelnosti a efektivity. Odpovědí na tyto výzvy je koncept Zemědělství 4.0 
(Smart Agriculture), který představuje paradigmatický posun od mechanizace k digitalizaci a 
automatizaci. Jádrem této revoluce není pouhé nahrazení svalové síly stroji, ale nahrazení 
lidského smyslového vnímání a kognitivního rozhodování umělou inteligencí (AI). Klíčovou 
technologií, která tento přechod umožňuje, je počítačové vidění (Computer Vision - CV). 
Zemědělci, kteří po staletí využívali své smysly k hodnocení stavu plodin, nyní musí rozšířit své 
schopnosti pomocí senzorů, které jim umožní "vidět" za hranice lidského oka a spravovat pole 
s miliony rostlin na úrovni individuální péče.1 

Tato výzkumná zpráva se specificky zaměřuje na aplikaci pokročilých systémů počítačového 
vidění v oblasti pěstování zeleniny (specialty crops). Na rozdíl od polních plodin, jako je 
pšenice nebo kukuřice, je prostředí zelinářství charakteristické vysokou mírou 
nestrukturovanosti, biologické variability a nutností jemné manipulace s křehkými produkty. 
Zpráva syntetizuje poznatky z více než 130 technických zdrojů a analyzuje technologický vývoj 
od tradičních metod zpracování obrazu až po nejnovější architektury hlubokého učení, jako 
jsou Vision Transformers a základní modely (Foundation Models), v kontextu let 2024 a 2025. 



1.1 Ekonomické a socio-technické determinanty robotizace 
Nasazení robotických systémů v zelinářství není motivováno pouze technologickým pokrokem, 
ale především tvrdými ekonomickými daty. Analýzy nákladů a přínosů (Cost-Benefit Analysis) 
robotických systémů, jako jsou autonomní plečky nebo sklízecí roboty, ukazují, že navzdory 
vysokým počátečním kapitálovým výdajům (CAPEX) dochází k výraznému snížení provozních 
nákladů (OPEX). Studie z francouzských vinic a dánských řepných polí prokázaly, že 
autonomní systémy mohou snížit spotřebu herbicidů až o 90 % díky preciznímu bodovému 
postřiku (spot spraying) nebo jejich úplné náhradě mechanickou či laserovou likvidací.2 V 
kontextu pěstování zeleniny, kde manuální plení a sklizeň představují největší nákladovou 
položku, nabízí technologie jako Stout Smart Cultivator snížení mzdových nákladů na plení 
až o 96 %.4 

Ekonomická proveditelnost je však silně závislá na intenzitě využívání strojů. Zatímco u vysoce 
hodnotných plodin (high-value crops) je návratnost investice (ROI) atraktivní, u komoditních 
plodin s nižší marží je adopce pomalejší. Klíčovým faktorem je zde také spolehlivost a rychlost 
detekce. Systémy, které nedosahují alespoň 95% přesnosti detekce plevelů v reálném čase, 
nejsou komerčně životaschopné, protože riziko poškození plodiny převyšuje úspory na 
pracovní síle.5 

2. Teoretický rámec a evoluce algoritmů počítačového 
vidění 
Historie aplikace počítačového vidění v zemědělství je příběhem postupného přechodu od 
rigidních, pravidly svázaných systémů k flexibilním, daty řízeným modelům umělé inteligence. 
Tento vývoj lze rozdělit do tří distinktivních fází, které se v současné praxi často prolínají. 

2.1 Éra tradičního zpracování obrazu a extrakce příznaků 
V počátcích automatizace zemědělství se spoléhalo na techniky klasického zpracování obrazu 
(Digital Image Processing - DIP). Tyto metody byly založeny na předpokladu, že cílové objekty 
(plodiny) lze odlišit od pozadí (půda, plevel) pomocí explicitně definovaných pravidel. 

●​ Segmentace na základě barvy: Nejrozšířenější metodou bylo využití barevných indexů, 
jako je ExG (Excess Green), který zvýrazňuje zelenou složku obrazu a potlačuje červenou 
a modrou. Prahováním tohoto indexu bylo možné oddělit vegetaci od půdy. Další přístupy 
využívaly transformace do barevných prostorů jako HSV nebo OHTA, které jsou méně 
citlivé na změny intenzity osvětlení než standardní RGB prostor.6 

●​ Morfologické operace: Pro analýzu tvaru listů nebo plodů se využívaly operace eroze a 
dilatace, detekce hran (Canny, Sobel) a Houghova transformace pro detekci kruhových 
tvarů (např. rajčata, citrusy). 

●​ Limity tradičních metod: Ačkoli byly tyto algoritmy výpočetně nenáročné a snadno 
implementovatelné na starším hardwaru, selhávaly v reálných polních podmínkách. Jejich 



hlavní slabinou byla neschopnost generalizace. Změna světelných podmínek (zataženo 
vs. slunečno), vrhání stínů nebo překryv listů vedly k dramatickému poklesu přesnosti. 
Kvantitativní srovnání ukazují, že v komplexních scénářích (např. plevel v řádku plodiny) 
dosahovaly tradiční metody přesnosti (accuracy) stěží 70–80 %, což je pro autonomní 
systémy nedostatečné.7 

2.2 Revoluce Hlubokého učení (Deep Learning) a architektury CNN 
Nástup hlubokých konvolučních neuronových sítí (CNN) po roce 2012 znamenal pro 
zemědělskou robotiku koperníkovský obrat. Namísto ručního definování toho, jak vypadá list 
("je zelený a má oválný tvar"), se neuronová síť učí tyto charakteristiky sama z velkého 
množství anotovaných dat. 

2.2.1 Detekce objektů: Dominance rodiny YOLO 

V oblasti detekce v reálném čase (Real-Time Object Detection) se de facto standardem staly 
algoritmy rodiny YOLO (You Only Look Once). Na rozdíl od dvoufázových detektorů 
(two-stage detectors) jako Faster R-CNN, které nejprve generují návrhy regionů a poté je 
klasifikují, YOLO zpracovává obraz v jediném průchodu sítí. To přináší zásadní výhodu v 
rychlosti inference, která je kritická pro roboty pohybující se po poli. 

Vývoj v letech 2024–2025 přinesl verze YOLOv8 a YOLOv10, které integrují pokročilé 
mechanismy pro zlepšení přesnosti na malých objektech (typický problém při detekci plevelů v 
rané fázi růstu): 

●​ Architektura: YOLOv8 využívá C2f moduly v páteřní síti (backbone), které zlepšují tok 
gradientů a extrakci příznaků. Důležitým posunem je přechod na "anchor-free" detekci, 
což eliminuje nutnost ručního ladění kotevních boxů (anchor boxes) pro různé typy 
plodin.9 

●​ Výkonnost: Experimentální validace na datasetu chorob zeleniny (15 000 snímků) 
ukázala, že model YOLOv8 dosahuje střední průměrné přesnosti (mAP@0.5) na úrovni 
95,6 %, což představuje zlepšení o 6,4 procentního bodu oproti předchozím baseline 
modelům. Inferenční čas se pohybuje kolem 18,6 ms na snímek, což umožňuje zpracování 
videa rychlostí přes 50 FPS.9 Srovnávací studie potvrzují, že řada YOLO překonává Faster 
R-CNN v rychlosti, aniž by docházelo k významné ztrátě přesnosti, což ji činí ideální pro 
nasazení na edge zařízeních.11 

2.2.2 Instanční segmentace (Instance Segmentation) 

Pro úlohy vyžadující přesnou lokalizaci a manipulaci (např. uchopení plodu) nestačí objekt 
pouze orámovat (bounding box). Je nutné klasifikovat každý pixel obrazu. Architektury jako 
Mask R-CNN a nověji YOLOv8-seg umožňují přesnou segmentaci instancí, což je klíčové pro 
oddělení překrývajících se plodů a identifikaci stopky (peduncle) pro bezpečný řez.12 



2.3 Nástup Vision Transformers (ViT) a Základních modelů 
Zatímco CNN dominovaly poslední dekádě, roky 2024 a 2025 jsou ve znamení nástupu 
architektur založených na Transformerech (původně vyvinutých pro zpracování jazyka) a tzv. 
Foundation Models. 

2.3.1 Vision Transformers (ViT) v zemědělství 

CNN mají ze své podstaty omezené receptivní pole (receptive field), což znamená, že se 
soustředí primárně na lokální textury a tvary. Vision Transformers naproti tomu rozdělují obraz 
na sekvenci "patchů" a využívají mechanismus Self-Attention k modelování globálních vztahů 
mezi nimi. 

●​ Aplikace: Tato schopnost "vidět celek" je neocenitelná při detekci chorob, kde příznaky 
mohou být rozprostřeny po celé rostlině v subtilních vzorech. Studie ukazují, že modely 
kombinující ViT s mechanismem "Mixture of Experts" (MoE) dosahují o 20 % vyšší 
přesnosti než standardní ViT a prokazují výrazně lepší generalizaci při přenosu mezi 
doménami (např. trénink na laboratorních datech a testování na poli).13 

●​ Srovnání: Na klasifikačních úlohách multispektrálních snímků dosahují ViT modely 
přesnosti přes 93 %, čímž překonávají tradiční CNN architektury jako ResNet nebo 
EfficientNet.15 

2.3.2 Segment Anything Model (SAM) a Generativní AI 

Revolučním krokem je adaptace modelu SAM (Segment Anything Model) od společnosti 
Meta. SAM je tzv. "promptable segmentation system", který dokáže segmentovat jakýkoli 
objekt na základě bodu nebo textového promptu, aniž by na něj byl explicitně trénován 
(zero-shot learning). 

●​ Adaptace: Pro specifické zemědělské úlohy, jako je segmentace hustého porostu, však 
základní SAM často selhává. Výzkum se proto soustředí na vývoj adaptérů (např. 
SAM-Agri nebo SAMConvFormer), které integrují doménově specifické znalosti do 
architektury SAM.16 

●​ Výsledky: Využití SAM jako prvního kroku v detekčních pipelines zvyšuje přesnost 
následné klasifikace chorob o přibližně 10 %.18 Generativní modely (GenAI) a multimodální 
LLM (Large Language Models) otevírají cestu k systémům, které umožní farmářům 
komunikovat s roboty přirozeným jazykem a získávat komplexní analytické zprávy.19 

2.4 Kvantitativní srovnání přístupů 
Následující tabulka shrnuje klíčové rozdíly mezi diskutovanými přístupy v kontextu zemědělské 
robotiky: 

Parametr Tradiční CV 
(DIP) 

Hluboké 
učení 

Vision 
Transformers 

Foundation 
Models (SAM) 



(CNN/YOLO) (ViT) 

Mechanismus 
učení 

Ruční definice 
pravidel 

Učení z dat 
(lokální 
příznaky) 

Učení z dat 
(globální 
kontext) 

Zero-shot / 
Few-shot 

Závislost na 
datech 

Minimální Vysoká (tisíce 
snímků) 

Extrémní 
(miliony 
snímků) 

Předtrénováno 
(obří korpus) 

Odolnost vůči 
změnám 

Nízká (selhává 
při změně 
světla) 

Vysoká (při 
dobré 
augmentaci) 

Velmi vysoká 
(robustní) 

Velmi vysoká 

Výpočetní 
nároky 

Zanedbatelné 
(CPU) 

Střední (GPU 
Edge) 

Vysoké 
(Server/High-e
nd Edge) 

Extrémní 
(vyžaduje 
optimalizaci) 

Inferenční čas < 5 ms 10–30 ms 
(YOLOv8) 

50–200 ms 500+ ms (bez 
destilace) 

Typická 
aplikace 

Kontrolované 
osvětlení, 
třídění 

Detekce 
plevelů, 
navigace 

Klasifikace 
chorob, 
fenotypování 

Interaktivní 
segmentace, 
anotace 

3. Senzorická infrastruktura a multimodální fúze dat 
Schopnost autonomního systému vnímat prostředí je determinována kvalitou a diversitou jeho 
senzorů. Moderní zemědělská robotika opouští paradigma "jedné kamery" a směřuje k 
multimodální fúzi dat, která kombinuje prostorové, spektrální a vizuální informace. 

3.1 RGB a RGB-D: Základní stavební kameny 
Standardní barevné (RGB) kamery jsou sice levné a dostupné, ale pro robotickou manipulaci 
postrádají kritickou dimenzi – hloubku. Bez informace o vzdálenosti nemůže robotické rameno 
bezpečně uchopit plod. Proto se standardem stávají RGB-D systémy, které poskytují barevný 
obraz (RGB) zarovnaný s hloubkovou mapou (Depth - D). 

●​ Stereo Vision: Využívá dvě kamery k výpočtu hloubky na základě disparity (posunu) 
obrazu, podobně jako lidské oči. Je to pasivní metoda, která funguje dobře na slunci, ale 
selhává na površích bez textury (např. bílé stěny skleníků).21 



●​ Time-of-Flight (ToF) a Structured Light: Aktivní metody (např. senzory v Microsoft 
Azure Kinect nebo Intel RealSense), které vysílají infračervené světlo a měří dobu letu 
paprsku nebo deformaci promítaného vzoru. Poskytují vysokou přesnost na krátkou 
vzdálenost, což je ideální pro navádění koncových efektorů (eye-in-hand).22 

3.2 LiDAR: Páteř autonomní navigace 
Pro navigaci mobilních platforem v řádcích plodin je LiDAR (Light Detection and Ranging) 
nenahraditelný. Na rozdíl od kamer není závislý na okolním osvětlení (funguje v noci i na 
přímém protisvětle) a poskytuje přesnou 3D reprezentaci geometrie okolí. 

●​ Aplikace v praxi: Společnost Naïo Technologies, přední výrobce zemědělských robotů 
(modely Oz, Orio, Ted), integruje 3D LiDARy pro detekci konce řádků, vyhýbání se 
překážkám a bezpečnostní certifikaci. LiDAR umožňuje robotům vytvářet mapu prostředí 
a lokalizovat se v ní s centimetrovou přesností, což je nezbytné pro mechanické 
plečkování, kde odchylka o pár centimetrů může zničit plodinu.23 

3.3 Hyperspektrální a multispektrální zobrazování (HSI/MSI) 
Zatímco RGB a LiDAR vidí to, co vidí člověk (tvar a barvu), hyperspektrální zobrazování 
odhaluje chemické a fyziologické procesy uvnitř rostliny. HSI senzory snímají odražené světlo 
ve stovkách úzkých spektrálních pásem, pokrývajících viditelné (VIS), blízké infračervené (NIR) 
a krátkovlnné infračervené (SWIR) spektrum. 

●​ Princip: Každá choroba, škůdce nebo fyziologický stres (sucho) mění buněčnou 
strukturu a obsah vody v listech, což se projeví změnou odrazivosti v specifických 
vlnových délkách (spektrální signatura). Například plíseň bramborová (Phytophthora 
infestans) je detekovatelná v pásmech 556 nm a 709 nm dříve, než jsou viditelné 
symptomy.25 

●​ Využití: HSI se využívá pro nedestruktivní hodnocení kvality (cukernatost, vnitřní hniloba) 
a včasnou detekci chorob. Výzvou zůstává obrovský objem dat (hyperspektrální kostky) a 
nutnost redukce dimenzionality (např. pomocí PCA nebo 3D-CNN) pro zpracování v 
reálném čase.26 

3.4 Senzorová fúze 
Kombinace těchto modalit je klíčem k robustnosti. Algoritmy fúze dat (např. Kalmanovy filtry 
nebo moderní neuronové sítě pro fúzi) integrují data z LiDARu (geometrie), RGB kamery 
(textura) a HSI (chemie). Příkladem je systém Stout Smart Cultivator, který využívá fúzi 
vizuálních dat a vlastní AI model k rozlišení plodiny od plevele a řízení mechanických čepelí.4 

4. Výpočetní hardware a Edge Computing 
Zpracování dat z výše uvedených senzorů generuje obrovské datové toky (v řádu gigabitů za 
sekundu). Vzhledem k tomu, že zemědělské oblasti často postrádají spolehlivé 



vysokorychlostní připojení (5G), musí zpracování probíhat přímo na robotu – na hraně sítě 
(Edge Computing). 

4.1 Dominance platformy NVIDIA Jetson 
V letech 2024–2025 se platforma NVIDIA Jetson stala de facto standardem pro vestavěnou 
AI v robotice. 

●​ Jetson AGX Orin: Tento modul představuje vrchol současné nabídky pro mobilní 
robotiku. S výkonem až 275 TOPS (trilions of operations per second) a architekturou GPU 
Ampere (2048 jader) přináší výkon serverové třídy do kompaktního, energeticky 
efektivního balení (spotřeba 15–60 W). 

●​ Význam pro zelinářství: Tento výkon je kritický pro běh moderních modelů jako Vision 
Transformers nebo YOLOv8 v reálném čase. AGX Orin poskytuje až 8x vyšší výkon než 
předchozí generace (Xavier), což umožňuje robotům zpracovávat simultánně více video 
streamů (např. z 6 kamer pro 360° rozhled) a provádět komplexní úkony jako SLAM, 
detekci a plánování pohybu současně.29 

4.2 Alternativní architektury 
Kromě GPU se v specifických aplikacích uplatňují i jiné akcelerátory: 

●​ FPGA (Field-Programmable Gate Arrays): Například Xilinx Kria. Nabízejí extrémně 
nízkou latenci a deterministické zpracování, což je vhodné pro řízení motorů a 
předzpracování signálu ze senzorů. Jejich nevýhodou je složitější vývoj.31 

●​ TPU (Tensor Processing Units): Google Coral Edge TPU. Poskytují vysokou efektivitu na 
watt pro inferenci modelů TensorFlow Lite, vhodné pro lehčí úlohy (např. detekce 
přítomnosti plodu) s minimální spotřebou energie.31 

5. Aplikace I: Robotická sklizeň a manipulace 
Robotická sklizeň (Robotic Harvesting) je technologicky nejnáročnější disciplínou v precizním 
zelinářství. Vyžaduje bezchybnou koordinaci mezi viděním, plánováním pohybu a fyzickou 
interakcí. 

5.1 Výzva detekce stopky (Peduncle Detection) 
Pro většinu plodové zeleniny (rajčata, papriky, lilky, okurky) nestačí detekovat pouze plod. 
Robot musí identifikovat stopku (peduncle) a přesně lokalizovat bod řezu (cutting point). 
Pokud by robot zatáhl za plod, mohl by vytrhnout celou rostlinu nebo poškodit plod v místě 
úponu, což vede k hnilobě. 

●​ Řešení: Moderní algoritmy využívají pokročilou instanční segmentaci (YOLOv8-seg, Mask 
R-CNN) k oddělení plodu, stopky a hlavního stonku. Výzkum se zaměřuje na řešení 
variability orientace stopky a její vizuální podobnosti se stonkem. Úspěšnost lokalizace 
bodu řezu se pohybuje kolem 75–85 %, což je stále oblast vyžadující zlepšení pro plně 



autonomní provoz.32 

5.2 Vizuální servořízení (Visual Servoing) a Aktivní percepce 
Navedení koncového efektoru k cíli probíhá v uzavřené smyčce zvané vizuální servořízení. 

●​ Eye-in-Hand: Kamera je umístěna přímo na robotickém rameni. Jak se rameno přibližuje 
k plodu, zvyšuje se rozlišení a přesnost zaměření. 

●​ Aktivní percepce (Active Perception): V hustém porostu jsou plody často skryty 
(okluze). Robotické systémy nové generace nejsou pasivními pozorovateli. Pokud systém 
detekuje částečnou okluzi, naplánuje pohyb kamery do nového úhlu (Viewpoint Planning) 
nebo dokonce využije rameno k jemnému odsunutí listů. Experimentální robot pro sklizeň 
jahod z Washington State University využívá kombinaci silikonových prstů a proudu 
vzduchu k odhalení skrytých plodů, čímž zvyšuje úspěšnost detekce na 93 %.22 

5.3 Měkká robotika a fúze taktilních dat 
Zelenina je měkká a snadno se poškodí. Tradiční rigidní chapadla jsou nahrazována měkkou 
robotikou (Soft Robotics). 

●​ Soft Grippers: Využívají poddajné materiály (silikon) a pneumatický nebo hydraulický 
pohon k jemnému obejmutí plodu. Tvarově se přizpůsobí variabilitě zeleniny.38 

●​ Vizuálně-taktilní fúze: Samotný zrak nestačí k určení, jak pevně plod držet. Moderní 
senzory, jako je FingerVision, kombinují kameru uvnitř průhledné silikonové kůže 
chapadla. To umožňuje robotu "vidět" texturu a deformaci povrchu plodu při dotyku 
(taktilní zpětná vazba) a upravit sílu stisku v reálném čase, aby nedošlo k pohmoždění. 
Fúze vizuálních a taktilních dat také pomáhá při odhadu zralosti (tvrdosti) plodu.39 

6. Aplikace II: Precizní ochrana a fenotypování 
6.1 Revoluce v likvidaci plevelů (Weeding) 
Zatímco sklizeň je stále ve fázi rané komercializace, automatizované plení je již plně komerčně 
dostupné a transformuje ekonomiku farem. 

●​ Laserové plení (Laser Weeding): Průkopníkem je společnost Carbon Robotics se 
strojem LaserWeeder. Tento systém využívá 42 kamer s vysokým rozlišením a palubní 
superpočítač k identifikaci plevelů v reálném čase. Následně CO2 lasery s 
sub-milimetrovou přesností zacílí na meristém (růstový vrchol) plevele a tepelně ho zničí. 
Systém eliminuje až 5 000 plevelů za minutu s 99% přesností, bez použití chemie a bez 
narušení půdy.41 

●​ Mechanická kultivace: Společnost Stout Industrial Technology vyvinula Smart 
Cultivator, který využívá AI k řízení mechanických čepelí. Systém "True Vision" rozlišuje 
plodinu od plevele a aktivně navádí čepele kolem rostlin. Jeden stroj nahradí práci 25 lidí.4 



6.2 3D Rekonstrukce a Fenotypování 
Pro šlechtění a detailní monitoring růstu se využívají pokročilé metody 3D rekonstrukce. 

●​ NeRF vs. 3D Gaussian Splatting: Tradiční fotogrammetrie je nahrazována neuronovými 
sítěmi. NeRF (Neural Radiance Fields) umožňuje vysoce detailní rekonstrukci rostlin, ale 
je výpočetně náročná. Novější technologie 3D Gaussian Splatting (3DGS) (2024) přináší 
revoluci v rychlosti – umožňuje renderování fotorealistických 3D modelů rostlin v reálném 
čase. To otevírá cestu k automatizovanému měření objemu biomasy, počítání plodů a 
analýze architektury rostlin s nebývalou přesností.46 

7. Datová výzva: Nedostatek dat a simulace 
Klíčovou bariérou pro vývoj robustních AI modelů je nedostatek kvalitních anotovaných dat 
(Data Scarcity). Získat miliony snímků specifické choroby nebo plevele v různých fázích růstu a 
světelných podmínkách je v reálném světě téměř nemožné. 

7.1 Veřejné datasety a jejich limity 
Existují snahy o vytvoření veřejných benchmarků, jako je Vegetable Image Dataset z 
Bangladéše (4319 snímků, 22 tříd zeleniny) nebo datasety z PlantVillage.49 Tyto databáze jsou 
však často omezené rozsahem, variabilitou pozadí nebo kvalitou anotací. Nevyváženost tříd 
(mnoho zdravých listů, málo nemocných) vede k biasu modelů.51 

7.2 Syntetická data a Sim-to-Real Transfer 
Řešením je generování syntetických dat. Platformy jako NVIDIA Isaac Sim využívají 
technologii Replicator k procedurálnímu generování fotorealistických trénovacích dat. 
Vývojáři mohou ve virtuálním prostředí simulovat nekonečné množství variací – měnit polohu 
slunce, texturu půdy, hustotu plevelů či stupeň okluze. 

●​ Domain Randomization: Klíčovou technikou je doménová randomizace, která "zmate" 
model nerealistickými variacemi v simulaci (např. fialové nebe), což paradoxně nutí 
neuronovou síť soustředit se na podstatné tvarové rysy objektu. To usnadňuje přenos 
naučeného modelu ze simulace do reality (Sim-to-Real), kde se robot setká s 
podmínkami, které nikdy předtím neviděl.52 

8. Závěr a strategický výhled 
Technologický vývoj v oblasti počítačového vidění pro zemědělskou robotiku dosáhl v polovině 
dekády bodu zlomu. Přechod od heuristických algoritmů k robustním hlubokým neuronovým 
sítím a Foundation Models, podpořený výkonným edge hardwarem, umožňuje vznik strojů, 
které již nejsou jen akademickými kuriozitami, ale ekonomicky nutnými nástroji pro přežití 
farem. 



Klíčové trendy pro budoucnost (2025–2030): 

1.​ Multimodalita: Roboti budou běžně kombinovat vidění, hmat a spektrální analýzu v 
jednom rozhodovacím procesu. 

2.​ Swarm Robotics: Posun od velkých strojů k flotilám menších, kooperujících robotů, kteří 
si sdílejí poznatky o prostředí. 

3.​ Human-Robot Interaction: Díky generativní AI a vizuálně-jazykovým modelům budou 
farmáři moci úkolovat roboty přirozenou řečí a dostávat od nich srozumitelné reporty. 

Zemědělská robotika tak přestává být pouhou náhradou lidské práce a stává se nástrojem 
precizní péče, který umožňuje produkovat více potravin s menšími vstupy a dopadem na 
životní prostředí. 
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